COT 6405 Introduction to Theory of Algorithms

Topic 4. Recurrences

Recurrences

- What is a recurrence?
- An equation that describes a function in terms of its value on smaller functions
- The time complexity of divide-and-conquer algorithms can be expressed as recurrences

Recurrence Examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array} \quad s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.\right.
$$

$T(n)=\left\{\begin{array}{cc}c & n=1 \\ 2 T\left(\frac{n}{2}\right)+c & n>1\end{array}\right.$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

Solving the recurrences

- Substitution method
- Recursion Tree
- Master method

Substitution method

- The substitution method comprises two steps:
-1 . Guess the form of the solution
- 2. Use mathematical induction to show the correctness of the guess

Example:

$T(n)= \begin{cases}1 & \text { if } n=1, \\ 2 T(n / 2)+n & \text { if } n>1 .\end{cases}$

1. Guess: $T(n)=n \lg n+n$. [Here, we have a recurrence with an exact function, rather than asymptotic notation, and the solution is also exact rather than asymptotic. We'll have to check boundary conditions and the base case.]
2. Induction:

Basis: $n=1 \Rightarrow n \lg n+n=1=T(n)$
Inductive step: Inductive hypothesis is that $T(k)=k \lg k+k$ for all $k<n$.
We'll use this inductive hypothesis for $T(n / 2)$.

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(\frac{n}{2} \lg \frac{n}{2}+\frac{n}{2}\right)+n \quad \text { (by inductive hypothesis) } \\
& =n \lg \frac{n}{2}+n+n \\
& =n(\lg n-\lg 2)+n+n \\
& =n \lg n-n+n+n \\
& =n \lg n+n .
\end{aligned}
$$

Substitution method (cont'd)

- We generally express the solution by asymptotic notations
- We don't worry about boundary cases, nor do we show base cases in the substitution proof.
- because we are ultimately interested in an asymptotic solution to a recurrence, it will always be possible to choose base cases that work.

Example: $T(n)=2 T(n / 2)+\Theta(n)$. If we want to show an upper bound of $T(n)=$ $2 T(n / 2)+O(n)$, we write $T(n) \leq 2 T(n / 2)+c n$ for some positive constant c.

1. Upper bound:

Guess: $T(n) \leq d n \lg n$ for some positive constant d. We are given c in the recurrence, and we get to choose d as any positive constant. It's OK for d to depend on c.

Substitution:

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+c n \\
& \leq 2\left(d \frac{n}{2} \lg \frac{n}{2}\right)+c n \\
& =d n \lg \frac{n}{2}+c n \\
& =d n \lg n-d n+c n \\
& \leq d n \lg n \quad \text { if }-d n+c n \leq 0 \text {, } \\
& d \geq c
\end{aligned}
$$

2. Lower bound: Write $T(n) \geq 2 T(n / 2)+c n$ for some positive constant c. Guess: $T(n) \geq d n \lg n$ for some positive constant d.
Substitution:

$$
\begin{aligned}
T(n) & \geq 2 T(n / 2)+c n \\
& \geq 2\left(d \frac{n}{2} \lg \frac{n}{2}\right)+c n \quad \text { Guess } \mathrm{T}(\mathrm{n})= \\
& =d n \lg \frac{n}{2}+c n \\
& =d n \lg n-d n+c n \\
& \geq d n \lg n \quad \text { if }-d n+c n
\end{aligned} \quad \begin{aligned}
& \\
&
\end{aligned}
$$

Therefore, $T(n)=\Omega(n \lg n)$.
Therefore, $T(n)=\Theta(n \lg n)$. [For this particular recurrence, we can use $d=c$ for both the upper-bound and lower-bound proofs. That won't always be the case.]

Substitution method

- For the substitution method:
- Show the upper and lower bounds separately.
- Might need to use different constants for each.
- Making a good guess
- Unfortunately, there is no general way to guess the correct solutions to recurrences.
- Takes experience and creativity.

Make sure you show the same exact form when doing a substitution proof.
Consider the recurrence
$T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$.
For an upper bound:
$T(n) \leq 8 T(n / 2)+c n^{2}$.

$$
\begin{aligned}
& \text { Guess } \mathrm{T}(\mathrm{n})=\Theta\left(n^{3}\right) \\
& \text { Prove: } \mathrm{T}(\mathrm{n})=\mathrm{O}\left(n^{3}\right) \text { and } \Omega\left(n^{3}\right)
\end{aligned}
$$

Guess: $T(n) \leq d n^{3}$.

$$
\begin{aligned}
T(n) & \leq 8 d(n / 2)^{3}+c n^{2} \\
& =8 d\left(n^{3} / 8\right)+c n^{2} \\
& =d n^{3}+c n^{2}
\end{aligned}
$$

$$
\nless d n^{3} \quad \text { doesn't work! }
$$

How to fix this?

Remedy: Subtract off a lower-order term.
Guess: $T(n) \leq d n^{3}-d^{\prime} n^{2}$.
$T(n) \leq 8\left(d(n / 2)^{3}-d^{\prime}(n / 2)^{2}\right)+c n^{2}$
$=8 d\left(n^{3} / 8\right)-8 d^{\prime}\left(n^{2} / 4\right)+c n^{2}$
$=d n^{3}-2 d^{\prime} n^{2}+c n^{2}$
$=d n^{3}-d^{\prime} n^{2}-d^{\prime} n^{2}+c n^{2}$
$\begin{aligned} \leq d n^{3}-d^{\prime} n^{2} \quad \text { if }-d^{\prime} n^{2}+c n^{2} & \leq 0, \\ d^{\prime} & \geq c\end{aligned}$

Avoiding Pitfalls

- It is easy to err in the use of asymptotic notation
- Solve $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\Theta(n)$
- Guess: $\mathrm{T}(n)=\mathrm{O}(n)$ and $\mathrm{T}(n) \leq d n$ for some positive constant number d
- Induction: $\mathrm{T}(n) \leq 2 \mathrm{~T}(n / 2)+c n$

$$
\begin{aligned}
& \leq 2(d(n / 2))+c n \\
& \leq d n+c n=(d+c) n=\mathrm{O}(n)
\end{aligned}
$$

Why wrong?

Changing variables

- Sometimes, a little algebraic manipulations can make an unknown recurrence similar to one you have seen before.
- Solve the recurrence $T(n)=2 T(\sqrt{n})+\lg n$
- Renaming $m=\lg n$ yields $T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m$
- We can now rename $S(m)=T\left(2^{m}\right)$ to produce the new recurrence $S(m)=2 S(m / 2)+m$
$-S(m)=\Theta(m l g m)$
$-T(n)=T\left(2^{m}\right)=S(m)=\Theta(m \lg m)=\Theta(\operatorname{lgnlglg} n)$

Recursion tree method

- How to solve the recurrence of merge sort?
- By using substitution method, we can have

$$
\begin{aligned}
-\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(n / 2)+n \\
& =2(2 \mathrm{~T}(n / 4)+n / 2)+n \\
& =4 \mathrm{~T}(n / 4)+2 n \\
& =\ldots \ldots .
\end{aligned}
$$

Recursion tree method (cont'd)

- An alternative approach: draw a tree to diagram all the recursive calls that take place

$$
T(n)=2 T(n / 2)+n
$$

- For the original problem, we have a cost of n, plus the two subproblems, each costing $n / 2$

Constructing the tree

For each of the size-n/2 subproblems, we have a cost of $n / 2$, plus two subproblems, each costing $\mathrm{n} / 4$

Constructing the tree (cont'd)

Constructing the tree (cont'd)

Computing the cost

- We add up the costs over all levels to determine the cost for the entire tree
- $T(n)=2^{0} * n+2^{1} * \frac{n}{2}+2^{2} * \frac{n}{2^{2}}+\ldots \ldots .+2^{l g n} * 0$

$$
=n \lg n=\Theta(n \lg n)
$$

Example

- Solve $\mathrm{T}(n)=3 \mathrm{~T}(n / 4)+c n^{2}$

Example(cont'd)

- The subproblem size for a node at depth i is $n / 4^{i}$
- The subproblem size hits $\mathrm{T}(1)$, when $n / 4^{i}=1$, or $i=\log _{4} n$
- Thus, tree has $1+\log _{4} n$ levels $\left(i=0,1, \ldots \log _{4} n\right)$

Example(cont'd)

- Each node at level i has a cost of $c\left(n / 4^{i}\right)^{2}$
- Each level has 3^{i} nodes
- Thus, the total cost of level i is $3^{i} c\left(n / 4^{i}\right)^{2}=$ $c n^{2}(3 / 16)^{i}$ $\quad c n^{2}$

$\mathrm{T}(1)$	$\mathrm{T}(1)$	$\mathrm{T}(1)$	$\mathrm{T}(1)$

$\ldots .$.	$\mathrm{T}(1)$	$\mathrm{T}(1)$	$\mathrm{T}(1)$	$\mathrm{T}(1)$

Example(cont'd)

- The bottom level has $3^{\log _{4} n}=n^{\log _{4} 3}$ nodes, each costing $\mathrm{T}(1)$
- Assume $T(1)$ is a constant. The total cost of the bottom level will be
$\mathrm{T}(1) n^{\log _{4} 3}=\Theta\left(n^{\log _{4} 3}\right)$

Total cost

- The total cost of level i is $\mathrm{cn}^{2}(3 / 16)^{i}$
- The total cost of the bottom level $\Theta\left(n^{\log _{4} 3}\right)$
- We add up the costs over all levels to determine the total cost for the entire tree:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{c} n^{2}+\frac{3}{16} \mathrm{c} n^{2}+\left(\frac{3}{16}\right)^{2} \mathrm{c} n^{2}+\cdots+\left(\frac{3}{16}\right)^{\log _{4} n-1} \mathrm{c} n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} \mathrm{c} n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\frac{\left(\frac{3}{16}\right)^{\log _{4} n-1}-1}{\frac{3}{16}-1} \mathrm{c} n^{2}+\Theta\left(n^{\log _{4} 3}\right)
\end{aligned}
$$

How to simplify the answer

$$
\begin{aligned}
\mathrm{T}(n) & =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} \mathrm{c} n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& \leq \sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i} \mathrm{cn}^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\frac{1}{1-\frac{3}{16}} \mathrm{c} n^{2}+\Theta\left(n^{\log _{4} 3}\right)=\frac{16}{13} \mathrm{c} n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

How to simplify the answer (cont'd)

- On the other hand,

$$
\mathrm{T}(n)=3 \mathrm{~T}(n / 4)+c n^{2} \geq c n^{2}
$$

Thus, $\mathrm{T}(n)=\Omega\left(n^{2}\right)$ and we conclude that

$$
\mathrm{T}(n)=\Theta\left(n^{2}\right)
$$

How to use substitution method to verify?

Exercise

- Solve $\mathrm{T}(n)=\mathrm{aT}(n / \mathrm{b})+f(n)$

Exercise (cont'd)

Exercise (cont'd)

- The subproblem size for a node at depth i is n / b^{i}
- The subproblem size hits $T(1)$, when $n / b^{i}=1$, or $i=\log _{b} n$
- Thus, tree has $1+\log _{b} n$ levels $\left(i=0,1, \ldots \log _{b} n\right)$

Exercise (cont'd)

- Each node at level i has a cost of $f\left(n / b^{i}\right)$
- Each level has a^{i} nodes
- Level 0: 1, level 1: a, level 2: a^{2}, level 3: $a^{3} \ldots$
- Thus, the total cost of level i is $a^{i} f\left(n / b^{i}\right)$

Exercise (cont'd)

- The bottom level has $a^{\log _{b} n}=n^{\log _{b} a}$ nodes, each costing $\mathrm{T}(1)$
- Assume $T(1)$ is a constant. The total cost of the bottom level will be
$\mathrm{T}(1) n^{\log _{b} a}=\Theta\left(n^{\log _{b} a}\right)$

Exercise (cont'd)

- We add up the costs over all levels to determine the total cost for the entire tree:

$$
\begin{aligned}
\mathrm{T}(n) & =\mathrm{f}(n)+a \mathrm{f}(n / b)+a^{2} \mathrm{f}\left(n / b^{2}\right)+\cdots+a^{\log _{b} n-1} \mathrm{f}\left(n / b^{\log _{b} n-1}\right)+\Theta\left(n^{\log _{b} a}\right) \\
& =\sum_{i=0}^{\log _{b} n-1} a^{i} \mathrm{f}\left(n / b^{i}\right)+\Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

