COT 6405 Introduction to Theory of Algorithms

Topic 4. Recurrences

Recurrences

• What is a recurrence?

 An equation that describes a function in terms of its value on smaller functions

• The time complexity of divide-and-conquer algorithms can be expressed as recurrences

Recurrence Examples

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases} \qquad s(n) = \begin{cases} 0 & n = 0 \\ n + s(n-1) & n > 0 \end{cases}$$

$$T(n) = \begin{cases} c & n=1 \\ T(n) = \begin{cases} c & n=1 \\ 2T\left(\frac{n}{2}\right) + c & n>1 \end{cases} \qquad T(n) = \begin{cases} c & n=1 \\ aT\left(\frac{n}{b}\right) + cn & n>1 \end{cases}$$

Solving the recurrences

- Substitution method
- Recursion Tree
- Master method

Substitution method

- The substitution method comprises two steps:
 - 1. Guess the form of the solution
 - 2. Use mathematical induction to show the correctness of the guess

Example:

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n & \text{if } n > 1. \end{cases}$$

- 1. *Guess:* $T(n) = n \lg n + n$. [Here, we have a recurrence with an exact function, rather than asymptotic notation, and the solution is also exact rather than asymptotic. We'll have to check boundary conditions and the base case.]
- 2. Induction:

Basis:
$$n = 1 \Rightarrow n \lg n + n = 1 = T(n)$$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We'll use this inductive hypothesis for T(n/2).

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

= $2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$ (by inductive hypothesis)
= $n\lg\frac{n}{2} + n + n$
= $n(\lg n - \lg 2) + n + n$
= $n\lg n - n + n + n$
= $n\lg n + n$.

Substitution method (cont'd)

- We generally express the solution by asymptotic notations
- We don't worry about boundary cases, nor do we show base cases in the substitution proof.
 - because we are ultimately interested in an asymptotic solution to a recurrence, it will always be possible to choose base cases that work.

Example: $T(n) = 2T(n/2) + \Theta(n)$. If we want to show an upper bound of T(n) = 2T(n/2) + O(n), we write $T(n) \le 2T(n/2) + cn$ for some positive constant *c*.

1. Upper bound:

Guess: $T(n) \leq dn \lg n$ for some positive constant *d*. We are given *c* in the recurrence, and we get to choose *d* as any positive constant. It's OK for *d* to depend on *c*.

Substitution:

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2\left(d\frac{n}{2}\lg\frac{n}{2}\right) + cn$$

$$= dn \lg\frac{n}{2} + cn$$

$$= dn \lg n - dn + cn$$

$$\leq dn \lg n \qquad \text{if } -dn + cn \leq 0,$$

$$d \geq c$$

Guess $T(n) = \Theta$ (*nlgn*) Prove: T(n) = O(nlgn) and $\Omega(nlgn)$ Lower bound: Write T (n) ≥ 2T (n/2) + cn for some positive constant c. Guess: T (n) ≥ dn lg n for some positive constant d. Substitution:

$$T(n) \geq 2T(n/2) + cn$$

$$\geq 2\left(d\frac{n}{2}\lg\frac{n}{2}\right) + cn$$

$$= dn\lg\frac{n}{2} + cn$$

$$= dn\lg n - dn + cn$$

$$\geq dn\lg n \qquad \text{if } -dn + cn \geq 0,$$

$$dn \leq c$$

Therefore, $T(n) = \Omega(n \lg n)$.

Therefore, $T(n) = \Theta(n \lg n)$. [For this particular recurrence, we can use d = c for both the upper-bound and lower-bound proofs. That won't always be the case.]

Substitution method

- For the substitution method:
 - Show the upper and lower bounds separately.
 - Might need to use different constants for each.
- Making a good guess
 - Unfortunately, there is no general way to guess the correct solutions to recurrences.
 - Takes experience and creativity.

Make sure you show the same *exact* form when doing a substitution proof. Consider the recurrence

$$T(n) = 8T(n/2) + \Theta(n^2).$$

For an upper bound:

$$T(n) \le 8T(n/2) + cn^{2}.$$

Guess: $T(n) \le dn^{3}.$

$$T(n) \le 8d(n/2)^{3} + cn^{2}$$

$$= 8d(n^{3}/8) + cn^{2}$$

$$\le dn^{3} + cn^{2}$$

doesn't work!

Guess $T(n) = \Theta(n^3)$ Prove: $T(n) = O(n^3)$ and $\Omega(n^3)$

How to fix this?

Remedy: Subtract off a lower-order term.
Guess:
$$T(n) \le dn^3 - d'n^2$$
.
 $T(n) \le 8(d(n/2)^3 - d'(n/2)^2) + cn^2$
 $= 8d(n^3/8) - 8d'(n^2/4) + cn^2$
 $= dn^3 - 2d'n^2 + cn^2$
 $= dn^3 - d'n^2 - d'n^2 + cn^2$
 $\le dn^3 - d'n^2$ if $-d'n^2 + cn^2 \le 0$,
 $d' \ge c$

Avoiding Pitfalls

- It is easy to err in the use of asymptotic notation
- Solve $T(n) = 2T(n/2) + \Theta(n)$
- Guess: T(n) = O(n) and $T(n) \le dn$ for some positive constant number d
- Induction: $T(n) \le 2T(n/2) + cn$ $\le 2(d(n/2)) + cn$ $\le dn + cn = (d+c)n = O(n)$

Why wrong?

Changing variables

- Sometimes, a little algebraic manipulations can make an unknown recurrence similar to one you have seen before.
- Solve the recurrence $T(n) = 2T(\sqrt{n}) + lgn$
 - Renaming m = lgn yields $T(2^m) = 2T(2^{m/2}) + m$
 - We can now rename $S(m) = T(2^m)$ to produce the new recurrence S(m) = 2S(m/2) + m
 - $-S(m) = \Theta(mlgm)$
 - $-T(n)=T(2^m)=S(m)=\Theta(mlgm)=\Theta(lgnlglgn)$

Recursion tree method

- How to solve the recurrence of merge sort?
- By using substitution method, we can have -T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n

Recursion tree method (cont'd)

- An alternative approach: draw a tree to diagram all the recursive calls that take place
 T(n) = 2T(n/2) + n
- For the original problem, we have a cost of n, plus the two subproblems, each costing n/2

Constructing the tree

For each of the size-n/2 subproblems, we have a cost of n/2, plus two subproblems, each costing n/4

Constructing the tree (cont'd)

Constructing the tree (cont'd)

Computing the cost

• We add up the costs over all levels to determine the cost for the entire tree

Example

• Solve $T(n) = 3T(n/4) + cn^2$

Example(cont'd)

- The subproblem size for a node at depth i is $n/4^i$
- The subproblem size hits T(1), when $n/4^i = 1$, or $i = \log_4 n$
- Thus, tree has $1 + \log_4 n$ levels (*i* = 0,1,... $\log_4 n$)

Example(cont'd)

- Each node at level *i* has a cost of $c(n/4^i)^2$
- Each level has 3^{*i*} nodes
- Thus, the total cost of level *i* is $3^i c(n/4^i)^2 = cn^2(3/16)^i$

Example(cont'd)

- The bottom level has 3^{log₄ n} = n^{log₄ 3}nodes, each costing T(1)
- Assume T(1) is a constant. The total cost of the bottom level will be

T(1)
$$n^{\log_4 3} = \Theta(n^{\log_4 3})$$

Total cost

- The total cost of level i is $cn^2(3/16)^i$
- The total cost of the bottom level $\Theta(n^{\log_4 3})$
- We add up the costs over all levels to determine the total cost for the entire tree:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + (\frac{3}{16})^{2}cn^{2} + \dots + (\frac{3}{16})^{\log_{4} n - 1}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$= \sum_{i=0}^{\log_4 n-1} (\frac{3}{16})^i cn^2 + \Theta(n^{\log_4 3})$$

$$=\frac{\left(\frac{3}{16}\right)^{\log_4 n-1}-1}{\frac{3}{16}-1}cn^2+\Theta(n^{\log_4 3})$$

How to simplify the answer

$$T(n) = \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$\leq \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - \frac{3}{16}} cn^2 + \Theta(n^{\log_4 3}) = \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2)$$

How to simplify the answer (cont'd)

• On the other hand,

$$T(n) = 3T(n/4) + cn^2 \ge cn^2$$

Thus, $T(n) = \Omega(n^2)$ and we conclude that
 $T(n) = \Theta(n^2)$

How to use substitution method to verify?

Exercise

• Solve T(n) = aT(n/b) + f(n)

- The subproblem size for a node at depth i is n/b^i
- The subproblem size hits T(1), when $n/b^i = 1$, or $i = \log_b n$
- Thus, tree has $1 + \log_b n$ levels ($i = 0, 1, \dots, \log_b n$)

- Each node at level *i* has a cost of $f(n/b^i)$
- Each level has aⁱ nodes
 Level 0: 1, level 1: a, level 2: a², level 3: a³....
- Thus, the total cost of level *i* is $a^i f(n/b^i)$

- The bottom level has a^{log_b n} = n^{log_b a} nodes, each costing T(1)
- Assume T(1) is a constant. The total cost of the bottom level will be
 T(1)n^{log_b a} = Θ(n^{log_b a})

• We add up the costs over all levels to determine the total cost for the entire tree:

 $\mathsf{T}(n) = \mathsf{f}(n) + a\mathsf{f}(n/b) + a^2\mathsf{f}(n/b^2) + \dots + a^{\log_b n - 1}\mathsf{f}(n/b^{\log_b n - 1}) + \Theta(n^{\log_b a})$

 $= \sum_{i=0}^{\log_b n-1} a^i f(n/b^i) + \Theta(n^{\log_b a})$